
ADVANCED OBJECT ORIENTED

PROGRAMMING

Engr. Anees Ahmed Soomro

Assistant Professor

CS QUEST Nawabshah

https://anees-soomro.neocities.org

1)Comments, White Spaces, Identifiers
2) Separators, Keywords, Reserved words
3)Literals, Escape Sequences,

4)Variables, Data Types.

Comments, White Spaces, Identifiers,

Comments

 A program can be documented by inserting comments at relevant places.

 These comments are for documentation purposes and are ignored by the compiler.

 Java provides three types of comments to document a program:

 A single-line comment: // ... to the end of the line

 A multiple-line comment: /* ... */

 A documentation (Javadoc) comment: /** ... */

Single-line Comment

 All characters after the comment-start sequence.

 // through to the end of the line constitute a single-line comment.

 // This comment ends at the end of this line.

 int age; // From comment-start sequence to the end of the line is a comment.

Multiple-line Comment

 A multiple-line comment, as the name suggests, can span several lines.

 Such a comment starts with /* and ends with */.

 /* A comment on several lines.*/

 The comment-start sequences (//, /*, /**) are not treated differently from other
characters when occurring within comments, and are thus ignored. This means
trying to nest multiple-line comments will result in compile time error:

 /* Formula for alchemy. gold = wizard.makeGold(stone); /* But it only works on
Sundays. */*/ The second occurrence of the comment-start sequence /* is ignored.
The last occurrence of the sequence */ in the code is now unmatched, resulting in a
syntax error.

Documentation Comment

 A documentation comment is a special-purpose comment that when placed before
class or class member declarations can be extracted and used by the javadoc tool to
generate HTML documentation for the program.

 Documentation comments are usually placed in front of classes, interfaces,
methods and field definitions. Groups of special tags can be used inside a
documentation comment to provide more specific information. Such a comment
starts with /** and ends with */:

/**

* This class implements a gizmo.

* @author K.A.M.

* @version 2.0

*/

 For details on the javadoc tool, see the documentation for the tools in the Java 2
SDK.

White Spaces

 A white space is a sequence of spaces, tabs, form feeds, and line terminator
characters in a Java source file. Line terminators can be newline, carriage return, or
carriage return-newline sequence.

 A Java program is a free-format sequence of characters that is tokenized by the
compiler, that is, broken into a stream of tokens for further analysis.

 Separators and operators help to distinguish tokens, but sometimes white space has
to be inserted explicitly as separators.

 For example, the identifier classRoom will be interpreted as a single token, unless
white space is inserted to distinguish the keyword class from the identifier Room.

 White space aids not only in separating tokens, but also in formatting the program
so that it is easy for humans to read. The compiler ignores the white spaces once the
tokens are identified.

Identifiers

 A name in a program is called an identifier. Identifiers can be used to denote classes,

methods, variables, and labels.

 In Java an identifier is composed of a sequence of characters, where each character can

be either a letter, a digit, a connecting punctuation (such as underscore _), or any

currency symbol (such as $, ¢, ¥, or £). However, the first character in an identifier

cannot be a digit.

 Since Java programs are written in the Unicode character set (see p. 23), the definitions

of letter and digit are interpreted according to this character set.

 Identifiers in Java are case sensitive, for example, price and Price are two different

identifiers.

Examples of Legal Identifiers:

 number, Number, sum_$, bingo, $$_100, mål, grüß

Examples of Illegal Identifiers:

 48chevy, all@hands, grand-sum

 The name 48chevy is not a legal identifier as it starts with a digit. The character @ is not

a legal character in an identifier. It is also not a legal operator so that all@hands cannot

not be interpreted as a legal expression with two operands. The character - is also not a

legal character in an identifier.

 However, it is a legal operator so grand-sum could be interpreted as a legal expression

with two operands.

Escape Sequences

 Certain escape sequences define special character values as shown in Table 2.7.

 These escape sequences can be single-quoted to define character literals.

 For example, the character literals '\t' and '\u0009' are equivalent.

 However, the character literals '\u000a' and '\u000d' should not be used to
represent newline and carriage return in the source code.

 These values are interpreted as line-terminator characters by the compiler, and will
cause compile time errors.

 One should use the escape sequences '\n' and '\r', respectively, for correct
interpretation of these characters in the source code.

 Table 2.7 Escape Sequence

 We can also use the escape sequence \ddd to specify a character literal by octal
value, where each digit d can be any octal digit (0–7), as shown in Table 2.8. The
number of digits must be three or fewer, and the octal value cannot exceed \377,
that is, only the first 256 characters can be specified with this notation.

 Table 2.8. Examples of Escape Sequence \ddd

Keywords

 Keywords are reserved identifiers that are predefined in the language and cannot be
used to denote other entities. All the keywords are in lowercase, and incorrect usage
results in compilation errors.

 Keywords currently defined in the language are listed in Table 2.1. In addition, three
identifiers are reserved as predefined literals in the language: the null reference and
the Boolean literals true and false (see Table 2.2). Keywords currently reserved, but
not in use, are listed in Table 2.3. All these reserved words cannot be used as
identifiers. The index contains references to relevant sections where currently
defined keywords are explained.

Table 2.1. Keywords in Java

abstract default implements protected throw

assert do import public throws

boolean double instanceof return transient

break else int short try

byte extends interface static void

case final long strictfp volatile

catch finally native super while

char float new switch

class for package synchronized

continue if private this

Table 2.2. Reserved Literals in Java

null true false

Table 2.3. Reserved Keywords not Currently in Use

const goto

Literals

 A literal denotes a constant value, that is, the value a literal represents remains
unchanged in the program. Literals represent numerical (integer or floating-point),
character, boolean or string values. In addition, there is the literal null that
represents the null reference.

Table 2.4. Examples of Literals

Integer 2000 0 -7

Floating-point 3.14 -3.14 .5 0.5

Character 'a' 'A' '0' ':' '-' ')'

Boolean true false

String "abba" "3.14" "for" "a piece of the action"

Integer Literals

 Integer data types are comprised of the following primitive data types: int, long, byte, and

short.

 The default data type of an integer literal is always int, but it can be specified as long by

appending the suffix L (or l) to the integer value. Without the suffix, the long literals

2000L and 0l will be interpreted as int literals. There is no direct way to specify a short or

a byte literal.

 In addition to the decimal number system, integer literals can also be specified in octal

(base 8) and hexadecimal (base 16) number systems. Octal and hexadecimal numbers are

specified with 0 and 0x (or 0X) prefix respectively.

 Examples of decimal, octal and hexadecimal literals are shown in Table 2.5. Note that the

leading 0 (zero) digit is not the uppercase letter O. The hexadecimal digits from a to f can

also be specified with the corresponding uppercase forms (A to F). Negative integers (e.g.

-90) can be specified by prefixing the minus sign (-) to the magnitude of the integer

regardless of number system (e.g., -0132 or -0X5A).

 Java does not support literals in binary notation.

Table 2.5. Examples of Decimal, Octal, and Hexadecimal Literals

Decimal Octal Hexadecimal

8 010 0x8

10L 012L 0XaL

16 020 0x10

27 033 0x1B

90L 0132L 0x5aL

-90 -0132 -0X5A

2147483647 (i.e., 231-1) 017777777777 0x7fffffff

-2147483648 (i.e., -231) -020000000000 -0x80000000

1125899906842624L (i.e., 250) 040000000000000000L 0x4000000000000L

Floating-point Literals

 Floating-point data types come in two flavors: float or double.

 The default data type of a floating-point literal is double, but it can be explicitly

designated by appending the suffix D (or d) to the value.

 A floating-point literal can also be specified to be a float by appending the suffix F (or f).

 Floating-point literals can also be specified in scientific notation, where E (or e) stands

for Exponent. For example, the double literal 194.9E-2 in scientific notation is interpreted

as 194.9*10-2 (i.e., 1.949).

Examples of double Literals

 0.0 0.0d 0D

 0.49 .49 .49D

 49.0 49. 49D

 4.9E+1 4.9E+1D 4.9e1d 4900e-2 .49E2

Examples of float Literals

 0.0F 0f 0.49F .49F 49.0F 49.F 49F 4.9E+1F 4900e-2f .49E2F

 Note that the decimal point and the exponent are optional and that at least one digit must

be specified.

 Boolean Literals

 The primitive data type boolean represents the truth-values true or false that are denoted

by the reserved literals true or false, respectively.

Character Literals

 A character literal is quoted in single-quotes (') and have the primitive data type char.

 Characters in Java are represented by the 16-bit Unicode character set, which subsumes the

8-bit ISO-Latin-1 and the 7-bit ASCII characters. In Table 2.6, note that digits (0 to 9),

upper-case letters (A to Z), and lower-case letters (a to z) have contiguous Unicode values.

Any Unicode character can be specified as a four-digit hexadecimal number (i.e., 16 bits)

with the prefix \u.

Table 2.6. Examples of Unicode Values

Character Literal Char Literal with Unicode value Character

' ' '\u0020' Space

'0' '\u0030' 0

'1' '\u0031' 1

'9' '\u0039' 9

'A' '\u0041' A

'B' '\u0042' B

'Z' '\u005a' Z

'a' '\u0061' a

'b' '\u0062' b

'z' '\u007a' z

'Ñ' '\u0084' Ñ

'å' '\u008c' å

'ß' '\u00a7'

Lifetime of Variables
Lifetime of a variable, that is, the time a variable is accessible during execution, is
determined by the context in which it is declared. We distinguish between
lifetime of variables in three contexts:
Instance variables— members of a class and created for each object of the class.
In other words, every object of the class will have its own copies of these variables,
which are local to the object. The values of these variables at any given time
constitute the state of the object. Instance variables exist as long as the object they
belong to exists.
Static variables— also members of a class, but not created for any object of the
class and, therefore, belong only to the class (see Section 4.10, p. 144). They are
created when the class is loaded at runtime, and exist as long as the class exists.

Local variables (also called method automatic variables)— declared in methods
and in blocks and created for each execution of the method or block. After the
execution of the method or block completes, local (non-final) variables are no
longer accessible.

file:///C:/Users/anees/Desktop/Session/AOOP/lectures AOOP/0201728281_ch04lev1sec14.html

Primitive Data Types
Figure 2.1 gives an overview of the primitive data types in Java.
Figure 2.1. Primitive Data Types in Java

Primitive data types in Java can be divided into three main categories:
Integral types— represent signed integers (byte, short, int, long) and unsigned
character values (char)
Floating-point types (float, double)— represent fractional signed numbers
Boolean type (boolean)— represent logical values
Primitive data values are not objects. Each primitive data type defines the range of
values in the data type, and operations on these values are defined by special
operators in the language .
Each primitive data type also has a corresponding wrapper class that can be used
to represent a primitive value as an object.

Table 2.9. Range of Integer Values

Data Type Width (bits) Minimum value

MIN_VALUE

Maximum value

MAX_VALUE

Byte 8 -27 (-128) 27-1 (+127)

Short 16 -215 (-32768) 215-1 (+32767)

Integer 32 -231 (-2147483648) 231-1 (+2147483647)

Integer Types

Table 2.13. Summary of Primitive Data Types

Data Type Width (bits) Minimum Value, Maximum Value Wrapper

Class

boolean not applicable true, false (no ordering implied) Boolean

byte 8 -27, 27-1 Byte

short 16 -215, 215-1 Short

char 16 0x0, 0xffff Character

int 32 -231, 231-1 Integer

long 64 -263, 263-1 Long

float 32 ±1.40129846432481707e-45f, ±3.402823476638528860e+38f Float

double 64 \'b14.94065645841246544e-324,

\'b11.79769313486231570e+308

Double

Variable Declarations
A variable stores a value of a particular type. A variable has a name, a type, and a
value associated with it.
In Java, variables can only store values of primitive data types and references to
objects.
Variables that store references to objects are called reference variables.
Declaring and Initializing Variables
Variable declarations are used to specify the type and the name of variables.
This implicitly determines their memory allocation and the values that can be
stored in them.
We show some examples of declaring variables that can store primitive values:
char a, b, c; // a, b and c are character variables.
double area;
boolean flag;
// flag is a boolean variable. The first declaration above is equivalent to the
//following three declarations:
char a;char b;char c;
A declaration can also include initialization code to specify an appropriate initial
value for the variable:
int i = 10, // i is an int variable with initial value 10.
j = 101; // j is an int variable with initial value 101.

long big = 2147483648L; // big is a long variable with specified initial value.

Object Reference Variables
An object reference is a value that denotes an object in Java. Such reference values
can be stored in variables and used to manipulate the object denoted by the
reference value.

The declaration determines what objects a reference variable can denote. Before
we can use a reference variable to manipulate an object, it must be declared and
initialized with the reference value of the object.
Pizza yummyPizza; // Variable yummyPizza can reference objects of class Pizza.
Hamburger bigOne, // Variable bigOne can reference objects of class
Hamburger smallOne; // and so can variable smallOne.

int a,b;
a= b=40;

