
ADVANCED OBJECT ORIENTED

PROGRAMMING

Engr. Anees Ahmed Soomro

Assistant Professor

CS QUEST Nawabshah

https://anees-soomro.neocities.org

OOP CONCEPTS

Objects , Object references, Messages.

Declaring Members: Fields and Methods

 Here is the class Check

 A class definition consists of a series of member declarations. In the case of
the class Check, it has one field:

 amount, which is an integer to hold value of Check.

 The class Check has two methods that implement the essential operations
on a Check:

 setAmount(int value) : To adjust the value of check.

 getAmount(): It retrieves and return the amount which is adjusted by
setAmount() method.

 The class definition also has a method-like declaration with the same
name as the class.

 Such declarations are called constructors. As we shall see, a constructor
is executed when an object is created from class.

 However, the implementation details in the example are not important
for the present discussion.

class Check

{

private int amount=0;

public int getAmount()

{ return amount; }

public void setAmount(int amt)

{ amount=amt;}

}

public class Mainclass

{

public static void main(String[] args)

{

int amt=0;

Check obj= new Check();

obj.setAmount(200);

amt=obj.getAmount();

System.out.println("Your current amount is :"+amt);

}

}

(OBJECTS):-Class Instantiation
 The process of creating objects from a class is called instantiation. An object is an instance of a class.

 The object is constructed using the class as a blueprint and is a concrete instance of the abstraction that the class

represents.

 An object must be created before it can be used in a program.

 In Java, objects are manipulated through object references (also called reference values or simply references).

 The process of creating objects usually involves the following steps:

Declaration of a variable to store the object reference

 This involves declaring a reference variable of the appropriate class to store the reference to the object.

// Declaration of two reference variables that will denote

// Two distinct objects, namely two checks of characters, respectively.

Check ch1, ch2;

Creating an object

 This involves using the new operator in conjunction with a call to a constructor, to create an instance of the class.

 // Create two distinct stacks of chars.

ch1 = new Check(); // Check amount

ch2 = new Check(); // Check amount:

The new operator returns a reference to a new instance of the Check class.

 This reference can be assigned to a reference variable of the appropriate class.

 Each object has a unique identity and has its own copy of the fields declared in the class definition.

 The two checks, denoted by ch1 and ch2, will have their own amount field.

 The purpose of the constructor call on the right side of the new operator is to initialize the newly created object.

 In this particular case, for each new Check instance created using the new operator, the constructor creates check

for amount setting and retrieval.

 The declaration and the instantiation can also be combined:

Chek ch1 = new Check(), ch2 = new Check();

 If the name of the reference variable is omitted, this denotes an

anonymous object.

 Since objects in Java do not have names, but are denoted by

references.

Object References
 A reference provides a handle to an object that is created and stored in memory.

 Objects can only be manipulated via references, which can be stored in variables.

 An object can have several references, often called its aliases.

 The object can be manipulated via any one of its aliases.

 // Create two distinct checks.

Check checkA = new Check();

Check checkB = new Check();

checkB = checkA;// (1) aliases after assignment//

Check previously referenced by checkB can now be garbage collected.

 Two checks are created in the code. Before assignment, After assignment at (1), reference

variables checkA, checkB will denote same Check,

 Reference variables checkA and checkB are aliases after the assignment, as they refer to the

same object.

 What happens to the check object that was denoted by the reference variable checkB before

the assignment?

 When objects are no longer in use, their memory is, if necessary, reclaimed and reallocated

for other objects.

 This is called automatic garbage collection. Garbage collection in Java is taken care of by the

runtime system.

Messages

 Message passing is a form of communication used in object oriented programming.

 Communication is made by the sending of messages to recipients.

 Forms of messages include function invocation, signals, and data packets.

 The process by which an object sends data to another object or asks the other object
to invoke a method.

 Also known to some programming languages as interfacing.

 For example, the object called Breeder may tell the Lassie object to sit by passing a
"sit" message which invokes Lassie's "sit" method.

 The syntax varies between languages, for example: [Lassie sit] in Objective-C.

 In Java code-level message passing corresponds to "method calling".

 Some dynamic languages use double-dispatch or multi-dispatch to find and pass
messages.

 Message passing systems have been called "shared nothing" systems because the
message passing abstraction hides underlying state changes that may be used in the
implementation of sending messages.

 In the terminology of OOP languages, a message is single means to pass control to
an object.

 If the object 'responds' to the message, it has a method for that message.

