
ADVANCED OBJECT ORIENTED

PROGRAMMING

Engr. Anees Ahmed Soomro

Assistant Professor

CS QUEST Nawabshah

https://anees-soomro.neocities.org

OOP CONCEPTS

1) Introduction of C++

2) C vs C++ vs JAVA

3) Compile and run first java program of Hello Quest message.

4) Compile and run of java program of Check class

 Both Java and C++ are most popular object-

oriented programming languages

 C++ was created at AT&T Bell Labs in 1979

 Java was born in Sun Microsystems in 1990

Object Oriented Programming Language

 Simple

 Object-oriented

 Distributed

 Robust

 Secure

 Architecture Neutral

 Portable

 Compiled or Interpreted

 High Performance

 Multithreaded

 Dynamic

 Fun

Language Feature Comparison

 No pointer

 No multiple inheritance

 Automatic garbage

collection

 No operator overloading

 No goto statement and no

structure and union data

structure

 Pointer

 Multiple inheritance

 Manual garbage

collection

 Operator overloading

 Goto statement and

structure and union

data structure

 No stand-alone data

and functions

 Automatically supports

polymorphism

 Allows the stand-alone

data and functions

 Needs declare virtual

methods explicitly

Handles TCP/IP networking easily and

nicely, can open and access objects across

the Internet via URL just like a local file

system

External library supports TCP/IP

networking, but much harder to do

network programming

Bytecode

JVM

OS kernel

Binary code

OS kernel

JAVA

source code

C++

source code

javac JIT

compiler

C++ compiler

gcc, g++, cl

Java

interpreter

Java compiler

Both compiled and interpreted Compiled

 Much slower than C++,

but good enough to run

interactively for most

applications

 JIT compiler available

 About 10~20 times

faster than equivalent

JAVA code

 Most operating

systems are written

using C/C++

 Originally designed for

writing highly reliable or

robust software

 Explicit method declarations

 No pointers and automatic

garbage collection avoid

hard-to-debug mistakes

 Array bounds-checking

 Allows implicit type and
function declarations

 No automatic garbage
collection is susceptible to
memory leakage

 Using pointers is
susceptible to memory
corruption

 No array bounds-
checking

 Memory is handled at compile-time by
compiler

• Byte-code is verified at run-time to

ensure security restrictions are not

violated

• Memory layout is handled at run-time

by JVM

• Uses multiple namespaces to prevent

hostile classes from spoofing a JAVA

program

 Same Bytecode can run on

any machine supporting

JVM

 Well defined and fixed-size

data types, file formats,

and GUI behavior

 Platform-dependent
binary code cannot be
executed on a different
machine

 Implementation specific
and varied-size data
types by platforms

 Provides native

multithreading support

 Concurrent applications

are quite easy

 Rely on external

libraries for

multithreading

 Harder to do

multithreaded

programming

 Run-time representation

for classes makes it

possible to dynamically

link classes into a running

system

 Loads classes as needed,

even from across networks

 Needs recompile if

libraries are updated

 Load libraries when

compiled

Nice features combined with the Internet

applications make JAVA programming

appealing and fun

The complicated or even some confusing

features make C++ programming

error prone

 C++ is a high performance and powerful language.

Most of the industry software is written in C/C++

 JAVA’s cross-platform compatibility and convenient

APIs for networking and multi-threading have won it a

place in the business world. Java is the logically next

step in the evolution of C++

• Program

• Software

• Compiler

• Interpreter

• Modular programming/Structured Programming

• Non structured programming

• Need of Programming language

• Difference between structured and object oriented programming

• Advantages of object oriented programming

• Object orientation

• Pillars of object oriented programming

• Classes

• Inheritance

• Polymorphism

• Encapsulation

CLASSES
• One of the fundamental ways in which we handle complexity is abstraction.

• An abstraction denotes essential properties and behaviors of an object that differentiate it from other

objects.

• The essence of OOP is modeling abstractions, using classes and objects.

• The hard part in this endeavor is finding the right abstractions.

• A class denotes a category of objects, and acts as a blueprint for creating such objects.

• A class models an abstraction by defining properties and behaviors for objects representing the

abstraction.

• An object exhibits the properties and behaviors defined by its class.

• The properties of an object of a class are also called attributes, and are defined by fields in Java.

• A field in a class definition is a variable which can store a value that represents a particular property.

• The behaviors of an object of a class are also known as operations, and are defined using methods in

Java.

• Fields and methods in a class definition are collectively called members.

• An important distinction is made between the contract and the implementation that a class provides

for its objects.

• The contract defines what services, and implementation defines how these services are provided by

class.

• Clients (i.e., other objects) only need to know the contract of an object, and not its implementation, in

order to avail themselves of the object's services.

Compile and Execute Java Program
public class Mainclass

{

public static void main(String[] args)

{
System.out.println(“Hello Quest”);

}

}

Compile

E:\jdk\bin>javac Mainclass.java

Execute

E:\jdk\bin>java Mainclass

Output

Hello Quest

Declaring Members: Fields and Methods

 Here is the class Check

 A class definition consists of a series of member declarations. In the case of
the class Check, it has one field:

 amount, which is an integer to hold value of Check.

 The class Check has two methods that implement the essential operations
on a Check:

 setAmount(int value) : To adjust the value of check.

 getAmount(): It retrieves and return the amount which is adjusted by
setAmount() method.

 The class definition also has a method-like declaration with the same
name as the class.

 Such declarations are called constructors. As we shall see, a constructor
is executed when an object is created from class.

 However, the implementation details in the example are not important
for the present discussion.

class Check

{

private int amount=0;

public int getAmount()

{ return amount; }

public void setAmount(int amt)

{ amount=amt;}

}

public class Mainclass

{

public static void main(String[] args)

{

int amt=0;

Check obj= new Check();

obj.setAmount(200);

amt=obj.getAmount();

System.out.println("Your current amount is :"+amt);

}

}

Mobile class Example
• Write a program in java for class Mobile with setBalance(), getBalance() methods and

balance as field.

class Mobile

{

private int balance=0;

public void setBalance(int blc)

{balance=blc;}

public int getBalance()

{return balance;}

}// end of Mobile class

class MainMobileclass

{public static void main(String arg[])

{

int blc=0;

Mobile obj=new Mobile();

obj.setBalance(1000);

blc=obj.getBalance();

System.out.println("The Balance of mobile is :"+blc);

}// end of main}// end of class

Passing String arguments in main
• Write a program in java for taking three arguments and display.

class StringArg

{

public static void main(String abc[])

{

System.out.println(abc[1]);

System.out.println(abc[2]);

System.out.println(abc[0]);

}

}

G:\jdk1.8\bin>javac StringArg.java

G:\jdk1.8\bin>java StringArg Anees Ahmed Soomro

Output

G:\jdk1.8\bin>

Ahmed

Soomro

Anees

Reference Materials

[1] H. M. Deitel, P.J. Deitel, “Java How To Program”, Prentice

Hall.

[2] Ivor Horton, “Beginning Java 2”, Wrox Corp.

[3] Patrick Naughton, Herbert Schildt, “Java 2 : The Complete

Reference”.

[4] Marty Hall, “Core Servlets and Java Server Pages”, Sun

Microsystems Press/Prentice Hall.

